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ARTIFICIAL NEURAL NETWORK SOLUTIONS OF SLAB-GEOMETRY
NEUTRON DIFFUSION PROBLEMS

Patrick S. Brantley

Lawrence Livermore National Laboratory
P.O. Box 808, L-023

Livermore, CA 94551

Artificial neural network (ANN) methods have been researched extensively within the
nuclear community for applications in systems control, diagnostics, and signal processing.

We consider here the use of multilayer perceptron ANNst as an alternative to finite-difference
and finite-element methods for obtaining solutions to neutron diffusion problems. This work

is based on a method proposed by van Milligen et. al. to obtain solutions of the differential
equations arising in plasma physics applications. 2 This ANN method has the potential

advantage of yielding an accurate, differentiable approximation to the solution of diffusion
problems at all points in the spatial domain.

We consider slab-geometry monoenergetic neutron diffusion problems with spatially-

constant total and absorption cross sections, at and ~, a constant interior source Q, and
Marshak boundary conditions with left and right boundary incident currents; J0+ and JR,

respectively. Denoting the diffusion operator as L; and the left boundary condition and right
boundary condition operators as £0 and/:R, respectively, we write the diffusion problem as

1 d-~
C¢(z)- 3crtdz~¢(z)+o,~¢(x)=Q 0<x<R , (1)

1 d(0) - 4 (0) ¢ (0) = + , (2)

1,£t{¢(R) 74q~(R) + 6crtd x (R) : 
(.3)

We approximate the scalar flux ¢ (x) using a multilayer perceptron ANN with one hidden

layer. This type of network is capable of approximating anv continuons function to an
arbitrary accuracy if a sufficient number of hidden layer neurons are present.1 The input

to the ANN is the spatial variable x, and the activation of the jth hidden layer neuron,
l_<j < J, isgivenby

yj = f (c~jz +uj) (4)

Here c’t,j is the connection weigh1: between the inim,t neuron and the .jeh hidden laver neuron,

"2 is the so-called ::bias term" of the jtt, hidden layer neuron, and f (y) is the binary sigmoid



activation function given by f (y) = [1 + exp(Ty)]-t
given bv~ j

N=Egmj+v
j----t

The output of the neural net, work is

(5)

where 13j is the connection weight between the j~h hidden layer neuron and tile output
neuron, and v is the bias term of the output neuron. The connection weights and bias terms

are typically initialized to small random values and are .systematically adjusted during the
training of the ANN.

The ANN is trained to approximate the solution of the diffusion problem by minimizing
an objective function given by

’ ( oN (o)- Jo+) (R) (6)E = Z - + T - ’
i=1

where I is the number of spatial training points in the interior of the slab and the ’7 terms are

weights accounting for the relative magnitudes of the residual terms. The derivatives arising
from the action of the diffusion and boundary condition operators on the neural network

can be calculated analytically. The objective function given by Eq. (6) is a measure of how

accurately the output of the ANN approximates the solution of the diffusion problem at the
interior and boundary training points. This objective function is minimized by systematically

adjusting the weights of the ANN using a minimization algorithm (e.g. conjugate gradient or
quasi-Newton). The gradient of the objective ¯function with respect to the ANN parameters
(utilized by the minimization algorithm) can be calculated analytically.

We note that the training of the ANN requires minimization of a nonlinear objective
function and can suffer from trapping in local minima. The accuracy with which the ANN

approximates the neutron scalar flux depends on the initial choice of ANN weights (typi-

cally initialized to small random values). Certain initializations of the ANN weights lead
to convergence to a local minima of the objective function and a corresponding inaccurate
approximation to the scalar flux. One approach to solving this problem would be to incor,

porate a global optimization algorithm (e.g. simulated annealing) into the neural network
training procedure. However, further research into the resolution of this problem is required.

We consider here two numerical problems solved in a domain 0 _< x < 1 with total cross

section crt = l0 and absorption cross section ~ = 0.5. Problem I has an interior source

Q = 0.5 and vacuum boundaries. Problem II has no interior source, an incident current on
the left edge of the slab of magnftude J~- = 0.5, and a vacullUl boundary on the right edge

ANN used five hi(lden laver neurons and was Crained usingof the slab. In both cases, the r, r
(’leven spatial ~raining points (one point on each of the two boundaries and nine equally-

spaced interior points).
’ i " rIn Table l we compare typical globally-converg(.’d results obtained using the ANN method

to those obtained from a reference fine-mesh finite-differ(m(:e solution of the diffusion prob-

.)



lern. The error values tabulated are root mean squared relative errors in the neutron scalar

flux at both the spatial training points (training error) and at 101 equally-spaced points

across the slab (interpolation error). For both problems, the average training errors are sig-
nificantly less than 1%. The average interpolation errors are larger than the average training
errors, as expected, but exhibit reasonable accuracy for points in the spatial domain not
used in the training of the ANN.

Table 1: RMS Relative Errors in Neutron Scalar Flux for Problems I and II
Problem Training Error Interpolation Error

I 2.065x10-a 4.179x10-a

It 1.033 x 10-. 3 1.879 x 10-2

This ANN method is not computationally efficient in one spatial dimension. However,

the compact representation of the neutron scalar flux afforded by the ANN should be ad-
vantageous for multidimensional problems. The relative efficiency and accuracy of the ANN
method compared to finite difference and finite element methods for multidimensional prob-

lems remains t’o be seen.

In conclusion, we have described the use of multilayer perceptron ANNs for the solution of

monoenergetic slab-geometry neutron diffusion problems with Marshak boundary conditions.
The ANN method produces a reasonably accurate approximation to the neutron scalar flux

both at the spatial training points and at interpolation points within the spatial domain of
the problem.

We are also investigating the use of ANNs for the solution of slab-geometry neutron trans-

port problems, in which case the ANN has inputs for both the spatial and angular variables.
The conceptual advantages to this approach as opposed to traditional discrete ordinates

techniques are: 1) the spatial and angular variables are treated consistently; 2) complete

freedom exists for the selection of training points in the spatial and angular domains. We
plan to report on this work in the future.
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